

2.4 - 2.485GHz

#### **Features**

- 2.4 2.485GHz Frequency Range
- High Efficiency Optimized for Battery Operation
- Delivers up to +23dBm Output Power at 3.3V
- 160mA at +23dBm Output Power at 3.3V
- 1.6dB LNA Noise Figure at High current mode
- 2.7 4.0V Operation
- Single-Ended Transceiver Interface
- -40°C to 125°C Extended Temperature Range
- 3mm x 3mm x 0.45mm 16-Pin QFN Package

### **Applications**

- 802.15.4 Zigbee, RF4CE, Proprietary ISM
- Bluetooth® Low Energy (BLE) Mesh Networks
- IoT (Internet of Things) / M2M Connectivity
- Smart Home Hubs and Gateways
- Consumer Electronics, Smart Appliances
- Smart Lighting, Smart Metering
- Drone, Toy, Media Remote Controller
- Industrial Wireless Sensor Networks
- Home, Industrial, Factory Automation
- Wireless Sensor Nodes & Networks
- Wireless Audio & Video

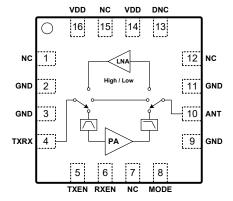



Figure 1: Functional Block Diagram

#### Description

The 8TR8218 is a compact, multi-function Front-End RFIC (Radio Frequency Integrated Circuit) intended for 802.15.4 ZigBee™/ Thread, Bluetooth® Smart, and proprietary ISM wireless protocol systems in the 2.4GHz band.

The 8TR8218 is optimized for battery operation with enhanced efficiency, operating over a wide voltage supply range from 2.7V to 4.0V, suited for a wide array of applications including battery-powered wireless systems.

The 8TR8218 combines a transmit power amplifier (PA), receive low noise amplifier (LNA), a single pole, double throw (SPDT) transmit / receive (T/R) switch (Figure 1) in a 3mm x 3mm x 0.45mm 16-pin QFN package. It also comes integrated with filter networks and input/output matching circuitry. The device delivers up to +23dBm saturated output power at a supply voltage of 3.3V.

The 8TR8218 is RoHS compliant, halogen-free, and REACH Compliant. It is rated for Moisture Sensitivity Level 1 (MSL1), reflow at 260°C per JEDEC J-STD-020. Refer to IPC/JEDEC J-STD-020 for detailed solder reflow temperature and profile.



16-Lead 3mm x 3mm x 0.45mm, QFN Package Figure 2: Package Type

### **Ordering Information**

| Part Number | Description                                           |
|-------------|-------------------------------------------------------|
| 8TR8218     | 2.4GHz Front-End RFIC<br>2500pieces per Tape and Reel |
| 8TR8218-EVB | Fully Tested and Characterize<br>Evaluation Board     |
| 8TR8218-DWF | 2.4GHz Front-End RFIC Die<br>in Wafer Form            |



2.4 - 2.485GHz

## **Pin Descriptions**

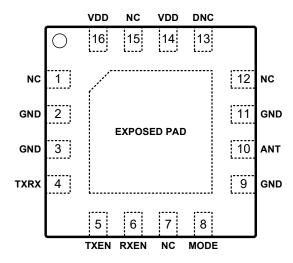



Figure 3: Pin Description (Top View)

#### Table 1: 8TR8218 Pin Signal Descriptions

| Pin   | Name                                                | Description                                  | Pin | Name | Description                                                      |
|-------|-----------------------------------------------------|----------------------------------------------|-----|------|------------------------------------------------------------------|
| 1     | NC                                                  | Not connected internally                     | 9   | GND  | Ground                                                           |
| 2     | GND                                                 | Ground                                       | 10  | ANT  | Antenna Port<br>(DC shorted to GND)                              |
| 3     | GND                                                 | Ground                                       | 11  | GND  | Ground                                                           |
| 4     | TXRX                                                | Transmit/Receive Port<br>(DC shorted to GND) | 12  | NC   | Not connected internally                                         |
| 5     | TXEN                                                | Control Logic Pin                            | 13  | DNC  | Do Not connect                                                   |
| 6     | RXEN                                                | Control Logic Pin                            | 14  | VDD  | Alternate DC Voltage supply pin (Internally connected to pin 16) |
| 7     | NC                                                  | Not connected internally                     | 15  | NC   | Not connected internally                                         |
| 8     | MODE                                                | Control Logic Pin                            | 16  | VDD  | DC Voltage Supply                                                |
| EXPOS | EXPOSED PAD Exposed pad should be connected to GND. |                                              |     |      |                                                                  |



2.4 - 2.485GHz

### **General Specifications**

**Table 2: 8TR8218 Absolute Maximum Ratings** 

| Paramete                                | Parameter                       |     | Minimum | Maximum | Remark                                                     |
|-----------------------------------------|---------------------------------|-----|---------|---------|------------------------------------------------------------|
| Supply Voltage                          | (VDD)                           | V   | 0       | 4.4     |                                                            |
| Control Logic Pin (TXEN                 | , RXEN, MODE)                   | V   | 0       | VDD     |                                                            |
| Transmit Output Powe                    | er at ANT Port                  | dBm |         | 24.5    |                                                            |
| Transmit Input Power                    | at TXRX Port                    | dBm |         | 10      |                                                            |
| Receive Input power                     | Receive Input power at ANT Port |     |         | 15      |                                                            |
| Bypass Input power                      | at ANT Port                     | dBm |         | 20      |                                                            |
| Storage Tempe                           | rature                          | °C  | -40     | 150     |                                                            |
| ECD LIDAA*                              | VDD (Pin 14, 16)                | V   |         | ±500    |                                                            |
| E2D - HRIM                              | ESD - HBM*  All other pins V    |     | ±3000   |         |                                                            |
| ESD - HBM<br>with application circuits* | All pins                        | V   |         | ±4000   | VDD to GND:<br>with shunt TVS Diode<br>and 1uF capacitor** |

Note: Sustained operation at or above the Absolute Maximum Ratings for any single or combinations of the parameters above may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50Ω terminal impedance.

**Table 3: 8TR8218 Recommended Operating Conditions** 

| Parameter                                         | Units | Minimum | Typical | Maximum |
|---------------------------------------------------|-------|---------|---------|---------|
| Supply Voltage (VDD, recommended)                 | V     | 2.7     | 3.3     | 4       |
| Supply Voltage (VDD, extend supply voltage)**     | V     | 2.2     |         | 4       |
| Control Pin - Logic High State (TXEN, RXEN, MODE) | V     | 1.2     |         | VDD*    |
| Control Pin - Logic Low State (TXEN, RXEN, MODE)  | V     | 0       |         | 0.4     |
| Operating Frequency Range                         | GHz   | 2.4     |         | 2.485   |
| Operating Temperature                             | °C    | -40     | 25      | 125     |

<sup>\*</sup>For Control Voltages > 3.0V, a  $10k\Omega$  series resistor should be used at the Control Logic Pins.

<sup>\*</sup>Electrostatic discharge Human Body Model(HBM) Reference Document: ANSI/ESDA/JEDEC JS-001-2017

<sup>\*\*</sup>For more details, see the application note 8TR8218\_AN230214.

<sup>\*\*</sup>Functional working with degraded performance for the supply voltage range 2.2V to 2.7V.



2.4 - 2.485GHz

### **Table 4: 8TR8218 Transmit Electrical Specifications**

(VDD = 3.3V, TXEN = High, RXEN = High or Low, MODE = Low, T<sub>Ambient</sub> = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

| Parameter                | Units   | Min | Тур  | Max | Test Conditions                                                |
|--------------------------|---------|-----|------|-----|----------------------------------------------------------------|
| Saturated Output Power   | dBm     |     | 23   |     |                                                                |
| Large-Signal Gain        | dB      |     | 24   |     | +23dBm Pout                                                    |
| Comment Comments on      |         |     | 95   |     | +20dBm Pout                                                    |
| Current Consumption      | mA      |     | 160  |     | +23dBm Pout                                                    |
| Tx Quiescent Current     | mA      |     | 20   |     | No RF applied                                                  |
| Second Harmonic          | dBm/MHz |     | -10  |     | +22dBm Pout                                                    |
| Third Harmonic           | dBm/MHz |     | -15  |     | IEEE 802.15.4 OQPSK signal                                     |
| Input Return Loss        | dB      |     | -15  |     |                                                                |
| Output Return Loss       | dB      |     | -10  |     |                                                                |
| Load VSWR for Stability  |         |     | 6:1  |     | All Non-harmonic Spurs<br>Less than -43dBm/MHz<br>Up to +23dBm |
| Load VSWR for Ruggedness |         |     | 10:1 |     | No Damage                                                      |

#### Table 5: 8TR8218 Receive(High current Mode) Electrical Specifications

(VDD = 3.3V, TXEN = Low, RXEN = High, MODE = Low, T<sub>Ambient</sub> = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

| Parameter           | Units | Min | Тур | Max | Test Conditions                 |
|---------------------|-------|-----|-----|-----|---------------------------------|
| Small-Signal Gain   | dB    |     | 19  |     |                                 |
| Current Consumption | mA    |     | 12  |     |                                 |
| Noise Figure        | dB    |     | 1.6 |     |                                 |
| Input P1dB          | dBm   |     | -13 |     |                                 |
| Input IP3           | dBm   |     | -3  |     | Pin = -35dBm/Tone, 1MHz spacing |
| Input Return Loss   | dB    |     | -8  |     |                                 |
| Output Return Loss  | dB    |     | -10 |     |                                 |

#### Table 6: 8TR8218 Receive(Low current Mode) Electrical Specifications

(VDD = 3.3V, TXEN = Low, RXEN = High, MODE = High, T<sub>Ambient</sub> = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

| Parameter           | Units | Min | Тур  | Max | Test Conditions                 |
|---------------------|-------|-----|------|-----|---------------------------------|
| Small-Signal Gain   | dB    |     | 16.5 |     |                                 |
| Current Consumption | mA    |     | 5.5  |     |                                 |
| Noise Figure        | dB    |     | 1.9  |     |                                 |
| Input P1dB          | dBm   |     | -11  |     |                                 |
| Input IP3           | dBm   |     | -2   |     | Pin = -35dBm/Tone, 1MHz spacing |
| Input Return Loss   | dB    |     | -7   |     |                                 |
| Output Return Loss  | dB    |     | -10  |     |                                 |

BeRex ●website: <u>www.berex.com</u>

•email: sales@berex.com



2.4 - 2.485GHz

### **Table 7: 8TR8218 Bypass Mode Specifications**

(VDD = 3.3V, TXEN = Low, RXEN = Low, MODE = High, T<sub>Ambient</sub> = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

| Parameter      | Units | Min | Тур | Max | Test Conditions |
|----------------|-------|-----|-----|-----|-----------------|
| Bypass Current | uA    |     | 3.5 |     |                 |
| Insertion Loss | dB    |     | 1.7 |     |                 |

#### **Table 8: 8TR8218 Shutdown Mode Specifications**

(VDD = 3.3V, TXEN = Low, RXEN = Low, MODE = Low, T<sub>Ambient</sub> = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

| Parameter          | Units | Min | Тур | Max | Test Conditions |
|--------------------|-------|-----|-----|-----|-----------------|
| Shutdown Current   | uA    |     | 0.3 |     |                 |
| ANT-TXRX Isolation | dB    |     | 23  |     |                 |

### **Table 9: 8TR8218 Switching Time Specifications**

(VDD = 3.3V, T<sub>Ambient</sub> = 25°C, Unless Otherwise Noted)

| Parameter          | Units | Min | Тур | Max | Test Conditions                      |
|--------------------|-------|-----|-----|-----|--------------------------------------|
| TX to RX           | nsec  |     | 800 |     | From 50% of RXEN to 90% of RX power  |
| TX to Bypass       | nsec  |     | 250 |     | From 50% of MODE to 90% Bypass power |
| TX to Shutdown     | nsec  |     | 50  |     | From 50% of TXEN to 10% TX power     |
| RX to TX           | nsec  |     | 850 |     | From 50% of TXEN to 90% of TX power  |
| RX to Bypass       | nsec  |     | 250 |     | From 50% of MODE to 90% Bypass power |
| RX to Shutdown     | nsec  |     | 50  |     | From 50% of RXEN to 10% RX power     |
| Bypass to TX       | nsec  |     | 850 |     | From 50% of TXEN to 90% of TX power  |
| Bypass to RX       | nsec  |     | 800 |     | From 50% of RXEN to 90% of RX power  |
| Bypass to Shutdown | nsec  |     | 750 |     | From 50% of MODE to 10% Bypass power |
| Shutdown to TX     | nsec  |     | 850 |     | From 50% of TXEN to 90% of TX power  |
| Shutdown to RX     | nsec  |     | 450 |     | From 50% of RXEN to 90% of RX power  |
| Shutdown to Bypass | nsec  |     | 50  |     | From 50% of MODE to 90% Bypass power |

#### Table 10: 8TR8218 Control Logic

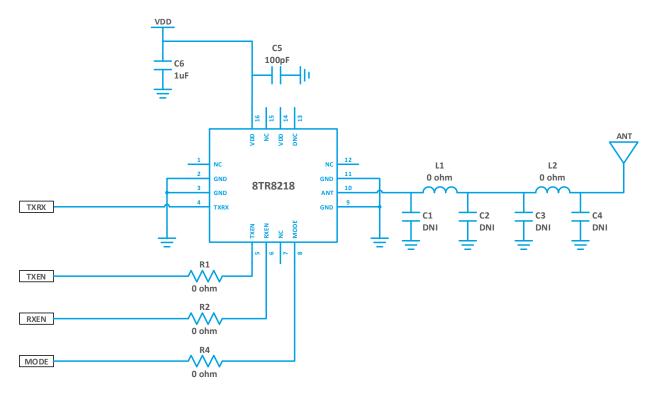
"1" = Logic High, "0" = Logic Low, All Control logic pins must have a state defined as either "0" or "1".

| TXEN | RXEN   | MODE | Operational Mode     |  |
|------|--------|------|----------------------|--|
| 0    | 0      | 0    | Shutdown Mode        |  |
| 0    | 0      | 1    | Bypass Mode          |  |
| 0    | 1      | 0    | RX High Current Mode |  |
| 0    | 1      | 1    | RX Low Current Mode  |  |
| 1    | 0 or 1 | 0    | TX Mode              |  |

BeRex

•website: www.berex.com

•email: <u>sales@berex.com</u>




2.4 - 2.485GHz

### **Application Notes**

The 8TR8218 Application note provides detailed descriptions and test data over various operating conditions. Visit <a href="https://www.berex.com">www.berex.com</a> or contact BeRex at <a href="mailto:sales@berex.com">sales@berex.com</a> to request additional documentation.

### **Application Schematic and PCB Layout**



\*For Control Voltages > 3.0V, a  $10k\Omega$  series resistor should be used at the Control Logic Pins. (R1 ~ R4)

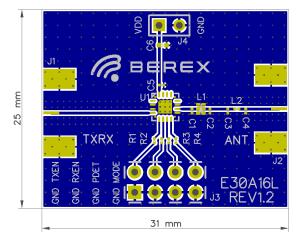



Figure 4: 8TR8218 Reference Design Schematic and PCB Layout



2.4 - 2.485GHz

## **Package Dimensions**

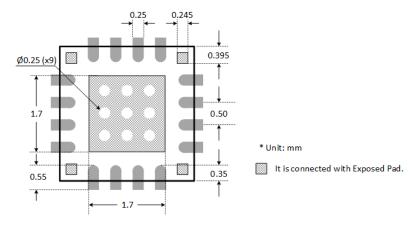
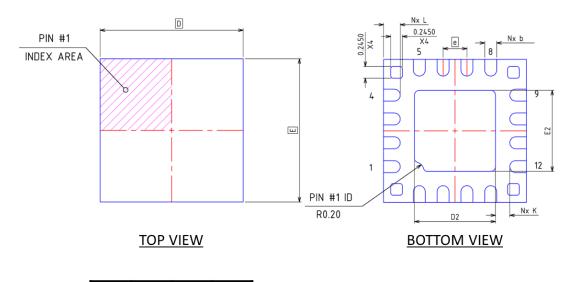




Figure 5: 8TR8218 Recommended PCB Layout Footprint



|    | MIN.           | NOM.      | MAX. |  |  |  |
|----|----------------|-----------|------|--|--|--|
| Α  | 0.41           | 0.45      | 0.50 |  |  |  |
| A1 | 0.00           | 0.02      | 0.05 |  |  |  |
| A3 |                | 0.127 Ref |      |  |  |  |
| b  | 0.18           | 0.25      | 0.30 |  |  |  |
| D  | 3.00 BSC       |           |      |  |  |  |
| E  | 3.00 BSC       |           |      |  |  |  |
| е  |                | 0.50 BSC  |      |  |  |  |
| D2 | 1.55           | 1.70      | 1.80 |  |  |  |
| E2 | 1.55           | 1.80      |      |  |  |  |
| K  | 0.20           |           |      |  |  |  |
| L  | 0.25 0.35 0.45 |           |      |  |  |  |
| N  | 16             |           |      |  |  |  |



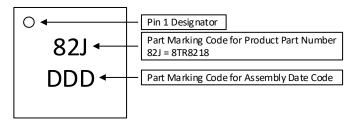

SIDE VIEW

Figure 6: 8TR8218 Package Dimension



2.4 - 2.485GHz

#### **Package Marking**



Note: The part marking: 82J represents the Product Part Number: 8TR8218.

Due to the size limitations of this package, only three (3) characters can be marked on each of two (2) rows. Therefore the Product Part Number is represented in the part marking by a 3-character code.

Figure 7: 8TR8218 Typical Part Marking

### **ESD Handling Information**

Electro Static Discharge (ESD) can cause immediate (or latent) failures in semiconductor Integrated Circuits (ICs). BeRex, Inc. RFIC products are designed with integral ESD protection structures, and all IC products are tested to meet industry standards for ESD event survival. Users must adhere to all precautions for handling ESD sensitive devices throughout the manufacturing, test, shipping, handling, or operational processes, and during field service operations in order to achieve optimum system performance and life expectancy. Production quantities of this product are shipped in a standard tape and reel format.

## RoHS Compliance 🕦 🏡 📀







This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This part is lead-free, halogen-free and compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each component of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.



2.4 - 2.485GHz

Tape & Reel

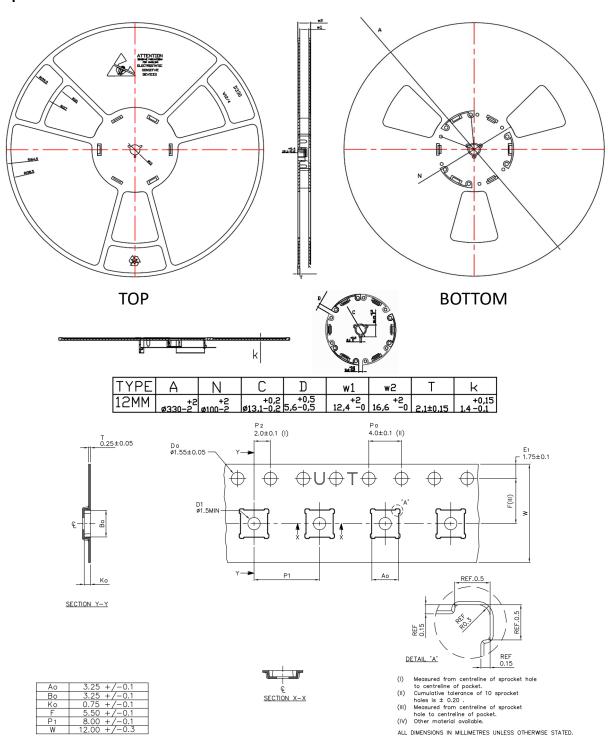



Figure 8: 8TR8218 Tape and Reel Dimension