BluNor BT840F is a powerful, highly flexible, ultra low power Bluetooth Low Energy (BLE) using Nordic nRF52840 SoC. With an ARM Cortex™ M4F MCU, available 1MB flash, 256KB RAM, embedded 2.4GHz multi-protocol transceiver, and an integrated PCB trace antenna. It allows faster time to market with reduced development cost.

For applications needing limited number of IO pins, prototyping and production are easier using 16 castellated pins. Additional 45 LGA (Land Grid Array) pins provide full access to 48 GPIOs of nRF52840.

BT840F has an ARM® TrustZone® CryptoCell-310 co-processor for implementation of IoT security.

Specifications:
- Nordic nRF52840 with ARM Cortex M4F.
- ARM® TrustZone® Cryptocell-310 co-processor
- Complete RF solution with integrated antenna
- Supports for IEEE 802.15.4 Thread and Zigbee
- Integrated DC-DC converter
- Serial Wire Debug (SWD)
- Nordic SoftDevice Ready
- Over-the-Air (OTA) firmware update
- Flash/RAM: 1MB/256KB.
- 48 General purpose I/O pins
- 12 bit/200KSPS ADC
- 3 SPI Master/Slave (8Mbps)
- Low power comparator
- Two 2-wire Master/Slave (I²C compatible)
- I2S audio interface
- UART (with CTS/RTS and DMA)
- 20 channel CPU independent Programmable Peripheral Interconnect (PPI).
- Quadrature Demodulator (QDEC)
- 128-bit AES HW encryption
- 5 x 32 bits, 3 x 24 bits Real Time Counters (RTC)
- NFC-A tag interface for OOB pairing
- Receiver Sensitivity: -96 dBm
- TX power: +/- 0 dBm; programmable 0 dBm to -20dBm in 4 dB steps.
- Sizes: 15.0x20.8x1.9mm
- Hybrid pins: 16 castellated and 43 LGA.
- Integrated high performance PCB trace antenna
- Operation voltage: 1.7V to 5.5V
- Operation temperature: -40°C to +85°C

Applications
- IoT (Internet of Things)
- Secure IoT
- Wearable
- Beacons/Proximity
- Fitness/Sports
- Smart toys
- Connected appliances
- Lighting products
- Sensors
- Home and building automation
- Key fobs
- Wrist watches
- Wireless charger
- Interactive entertainment devices

Model Summaries

<table>
<thead>
<tr>
<th>Module</th>
<th>BT840F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC</td>
<td>nRF52840-QIAA</td>
</tr>
<tr>
<td>Flash/RAM</td>
<td>1MB/256KB</td>
</tr>
<tr>
<td>BT Antenna</td>
<td>PCB trace</td>
</tr>
<tr>
<td>Bluetooth range at 125 Kbps</td>
<td>930 meters</td>
</tr>
<tr>
<td>FCC ID</td>
<td></td>
</tr>
<tr>
<td>Canada IC ID</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
</tbody>
</table>
Table Of Contents

1. Introduction .. 3

2. Codes Development Using Nordic Tools .. 3
 - Easy, fast and safe code development .. 3
 - Over-The-Air DFU .. 4
 - SoftDevices .. 4
 - Development Tools .. 4

3. Product Descriptions .. 5
 - Block Diagram of nRF52840 ... 5
 - ARM Trustzone CryptoCell 310 .. 6
 - Mechanical Drawings .. 8
 - Pin Assignments of BT840 .. 9
 - Pin Function ... 11
 - Mounting BT840F on the Host PCB .. 13
 - Host Board Design for Low Cost or Long Range ... 14

4. BT840F Evaluation Board .. 15
 - Communicating with a PC .. 15
 - EV BT840F V0 Evaluation Board Schematics .. 16
 - EV BT840F V3 Evaluation Board Schematics .. 17
 - Suggestion for Battery Power Application .. 18

5. Miscellaneous .. 19
 - Soldering Temperature-Time Profile for Re-Flow Soldering .. 19
 - Cautions, Design Notes, and Installation Notes ... 19
 - Packaging .. 22
 - FCC Label ... 22

6. Contact Us .. 23
1. Introduction
BluNor BT840F is powerful, highly flexible, ultra low power Bluetooth Low Energy (BLE) modules using Nordic nRF52840 SoCs. With an ARM Cortex™ M4F MCU, available 1MB flash, 256KB RAM, embedded 2.4GHz multi-protocol transceiver, and an integrated antenna, it allows faster time to market with reduced development cost.

The following is a block diagram of BT840F. Antenna circuit and main clock are integrated. All 48 GPIOs of nRF52840 can be accessed from main board. For lower power consumption at idle state, a 32.768 kHz crystal is added on the main board. Connection to an external NFC (Near Field Communication) antenna is provided.

BlurNor BT840F is a sister module of BT832F. The physical size is the same. There are 21 additional LGA pins for additional GPIOs provided by nRF52840.

2. Codes Development Using Nordic Tools

Easy, fast and safe code development
Nordic development environment for nRF52840 offers a clean separation between application code development and embedded protocol stacks. This means compile, link and run time dependencies with the embedded stack and associated debugging challenges are removed. The Bluetooth low energy and ANT stack is a pre-compiled binary, leaving application code to be compiled stand-alone. The embedded stack interface uses an asynchronous and event driven model removing the need for RTOS frameworks.
Over-The-Air DFU
The nRF52840 is supported by an Over-The-Air Device Firmware Upgrade (OTA DFU) feature. This allows for in the field updates of application software and SoftDevice.

SoftDevices
The Nordic protocol stacks are known as SoftDevices and complement the nRF52 Series SoCs. All nRF52 Series are programmable with software stacks from Nordic. This bring maximum flexibility to application development and allows the latest stack version to be programmed into the SoC.

SoftDevices available from Nordic:
S140: Bluetooth low energy concurrent central/peripheral/observer/broadcaster stack.

Development Tools
Nordic Semiconductor provides a complete range of hardware and software development tools for the nRF52 Series devices. nRF52 DK board is recommended for firmware development.

Nordic software development tools can be downloaded from the following webpage.

3. Product Descriptions
Brief description of nRF52840 SoC is provided. For full description of the SoC, please download from Nordic Semiconductor website.

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy

Block Diagram of nRF52840
The following is a block diagram of Nordic nRF52840 Bluetooth Low Energy (BLE) SoC. Arrows with white heads indicate signals that share physical pins with other signals.
The 32 bit ARM Cortex M4F MCU with hardware supports for DSP instructions and floating point operations, code density and execution speed are higher than other Cortex M MCU. The Programmable Peripheral Interconnect (PPI) system provides a 20-channel bus for direct and autonomous system peripheral communication without CPU intervention. This brings predictable latency times for peripheral to peripheral interaction and power saving benefits associated with leaving CPU idle. The device has 2 global power modes ON/OFF, but all system blocks and peripherals have individual power management control which allows for an automatic switching RUN/IDLE for system blocks based only on those required/not required to achieve particular tasks.

The radio supports Bluetooth low energy and ANT. Output power is scalable from a maximum of +8dBm down to -20 dBm in 4dB steps. Sensitivity is increased to -96 dBm to -89 dBm, depending on data rate. Sensitivity for BLE is -96 dBm, and -92.5 dBm for ANT.

The NFC block supports NFC-A tags with proximity detection and Wake-on-field from low power mode. The NFC enables Out-Of-Band (OOB) Bluetooth pairing of devices and thus greatly simplifying deployment.

ARM Trustzone CryptoCell 310

ARM® TrustZone® CryptoCell-310 co-processor is a security subsystem which provides Root of Trust (RoT) and cryptographic services for a device. CryptoCell services are available to the application through a software library API, not a hardware register interface.
The following cryptographic features are provided.

- FIPS-140-2 certified True Random Number Generator (TRNG)
- RSA asymmetric encryption
 - Up to 2048 bit key size
 - PKCS#1 v2.1/v1.5
 - Optional CRT support
- Elliptic curve cryptography (ECC)
 - NIST FIPS 186-4 recommended curves using pseudo-random parameters, up to 521 bits:
 - Prime field: P-192, P-224, P-256, P-384, P-521
 - SEC 2 recommended curves using pseudo-random parameters, up to 521 bits:
 - Prime field: P-160, P-192, P-224, P-256, P-384, P-521
 - Koblitz curves using fixed parameters, up to 256 bits:
 - Prime field: P-160, P-192, P-224, P-256
 - Edwards/Montgomery curves:
 - Ed25519, Curve 25519
 - ECDH/ECDSA support
- Secure remote password protocol (SRP)
 - Up to 3072 bit operations
- Hashing functions
 - SHA-1, SHA-2 up to 256 bit size
 - keyed-hash message authentication code (HMAC)
- AES symmetric encryption
 - General purpose AES engine (encrypt/decrypt, sign/verify)
 - 128 bit key size
 - Supported encryption modes: ECB, CBC, CMAC/CBC-MAC, CTR, CCM/CCM*.
- ChaCha20/Poly1305 symmetric encryption
 - Supported keyed size: 128 and 256 bits
 - Authenticated encryption with associated data (AEAD) mode
Mechanical Drawings

The followings are mechanical drawings of BT840F and BT832F. The physical sizes of both are the same, 15x20.8x1.9mm. Except the 19 pins in solid black dots, BT840F and BT832F is hardware pin to pin compatible. Firmware configuration is required to perform the same function.

Two types of pins are available to meet different application requirements.

- 16 castellated pins for application needing limited number of IOs. SMT equipment is not required for soldering castellated pins.
- 45 LGA (Land Grid Array) pins to access all 48 GPIOs of nRF52840 when needed.

BT840F and BT832F Mechanical drawings
Pin Assignments of BT840

The followings are BT840 pin assignment. Pin functions are in a table in next section. Please refer to Nordic nRF52840 Product Specifications for detailed descriptions and features supported.

https://www.nordicsemi.com/eng/Products/nRF52840

BT832F pin assignments.

BT840F V0 pin assignments
BT840F V1 pin assignments
Pin Function

<table>
<thead>
<tr>
<th>BT840</th>
<th>52840</th>
<th>BT832</th>
<th>52832</th>
<th>pin#</th>
<th>pin#</th>
<th>pin name</th>
<th>pin name</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>P0.26</td>
<td>SDA</td>
<td>38</td>
<td>P0.26</td>
<td>GPIO, configured as I2C SDA on EV-BT840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H2</td>
<td>P0.27</td>
<td>SCL</td>
<td>39</td>
<td>P0.27</td>
<td>GPIO, configured as I2C SCL on EV-BT840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D2</td>
<td>P0.00</td>
<td>XL1</td>
<td>2</td>
<td>P0.00</td>
<td>GPIO, connection for 32.768kHz crystal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F2</td>
<td>P0.01</td>
<td>XL2</td>
<td>3</td>
<td>P0.01</td>
<td>GPIO, connection for 32.768kHz crystal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A12</td>
<td>P0.02</td>
<td>AIN0</td>
<td>4</td>
<td>P0.02</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B13</td>
<td>P0.03</td>
<td>AIN1</td>
<td>5</td>
<td>P0.03</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L24</td>
<td>P0.09</td>
<td>NFC1</td>
<td>11</td>
<td>P0.09</td>
<td>GPIO, NFC antenna connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J24</td>
<td>P0.10</td>
<td>NFC2</td>
<td>12</td>
<td>P0.10</td>
<td>GPIO, NFC antenna connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B1</td>
<td>VDD</td>
<td></td>
<td>13</td>
<td>VDD</td>
<td>DC supply 1.7V to 3.6V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B7</td>
<td>GND</td>
<td></td>
<td>45</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>T2</td>
<td>P0.11</td>
<td></td>
<td>16</td>
<td>P0.13</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AD22</td>
<td>P1.00</td>
<td></td>
<td>21</td>
<td>P0.18</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AD8</td>
<td>P0.13</td>
<td></td>
<td>23</td>
<td>P0.20</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AC13</td>
<td>P0.18</td>
<td>RESET</td>
<td>24</td>
<td>P0.21</td>
<td>GPIO, configurable as RESET pin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>AA24</td>
<td>SWDCLK</td>
<td></td>
<td>25</td>
<td>SWDCLK</td>
<td>Serial Wire Debug clock input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>AC24</td>
<td>SWDIO</td>
<td></td>
<td>26</td>
<td>SWDIO</td>
<td>Serial Wire Debug I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>B19</td>
<td>P1.11</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>B17</td>
<td>P1.12</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z2</td>
<td>A16</td>
<td>P1.13</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z3</td>
<td>B15</td>
<td>P1.14</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z4</td>
<td>A14</td>
<td>P1.15</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z5</td>
<td>A20</td>
<td>P1.10</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z6</td>
<td>R24</td>
<td>P1.06</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>GND</td>
<td></td>
<td></td>
<td>45</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>B11</td>
<td>P0.28</td>
<td>AIN4</td>
<td>40</td>
<td>P0.28</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>A10</td>
<td>P0.29</td>
<td>AIN5</td>
<td>41</td>
<td>P0.29</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>J1</td>
<td>P0.04</td>
<td>AIN2</td>
<td>6</td>
<td>P0.04</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>K2</td>
<td>P0.05</td>
<td>AIN3</td>
<td>7</td>
<td>P0.05</td>
<td>GPIO, Analog input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>M2</td>
<td>P0.07</td>
<td></td>
<td>9</td>
<td>P0.07</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>P2</td>
<td>P1.08</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>GND</td>
<td></td>
<td></td>
<td>45</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>AC21</td>
<td>P0.25</td>
<td></td>
<td>37</td>
<td>P0.25</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>B9</td>
<td>P0.30</td>
<td>AIN6</td>
<td>42</td>
<td>P0.30</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>A8</td>
<td>P0.31</td>
<td>AIN7</td>
<td>43</td>
<td>P0.31</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>L1</td>
<td>P0.06</td>
<td></td>
<td>8</td>
<td>P0.06</td>
<td>GPIO, NC for BT832X, BT840X, PA control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>N1</td>
<td>P0.08</td>
<td></td>
<td>10</td>
<td>P0.08</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>V23</td>
<td>P1.03</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C0</td>
<td>GND</td>
<td></td>
<td></td>
<td>45</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>AD20</td>
<td>P0.24</td>
<td></td>
<td>29</td>
<td>P0.24</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>AD18</td>
<td>P0.22</td>
<td></td>
<td>27</td>
<td>P0.22</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>AD12</td>
<td>P0.17</td>
<td></td>
<td>20</td>
<td>P0.17</td>
<td>GPIO, NC for BT832X, BT840X, PA control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>AD10</td>
<td>P0.15</td>
<td>C4</td>
<td>18</td>
<td>P0.15</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>W24</td>
<td>P1.02</td>
<td>C5</td>
<td>15</td>
<td>P0.12</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>U24</td>
<td>P1.04</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>GND</td>
<td>D0</td>
<td>D0</td>
<td>45</td>
<td>VSS</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>AC19</td>
<td>P0.23</td>
<td>D1</td>
<td>28</td>
<td>P0.23</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>AC15</td>
<td>P0.19</td>
<td>D2</td>
<td>22</td>
<td>P0.19</td>
<td>GPIO, NC for BT832X, BT840X, PA control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>AC11</td>
<td>P0.16</td>
<td>D3</td>
<td>19</td>
<td>P0.16</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>AC9</td>
<td>P0.14</td>
<td>D4</td>
<td>17</td>
<td>P0.14</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Y23</td>
<td>P1.01</td>
<td>D5</td>
<td>14</td>
<td>P0.11</td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>T23</td>
<td>P1.05</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>P23</td>
<td>P1.07</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>AD16</td>
<td>P0.20</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>AC17</td>
<td>P0.21</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>R1</td>
<td>P1.09</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>AD6</td>
<td>D+</td>
<td></td>
<td></td>
<td></td>
<td>USB D+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>AD4</td>
<td>D-</td>
<td></td>
<td></td>
<td></td>
<td>USB D-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>U1</td>
<td>P0.12</td>
<td></td>
<td></td>
<td></td>
<td>GPIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td></td>
<td></td>
<td>F0</td>
<td></td>
<td></td>
<td>Ground pad, for BT840F V1, BT832X, BT840X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td></td>
<td>F1</td>
<td></td>
<td></td>
<td>Ground pad, for BT840F V1, BT832X, BT840X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
<td>F2</td>
<td></td>
<td></td>
<td>Ground pad, for BT840F V1, BT832X, BT840X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
<td>F3</td>
<td></td>
<td></td>
<td>Ground pad, for BT840F V1, BT832X, BT840X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Y2</td>
<td>VDDH</td>
<td>F4</td>
<td></td>
<td></td>
<td>High Voltage Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>AB2</td>
<td>DCCH</td>
<td>F5</td>
<td></td>
<td></td>
<td>DC to DC converter output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>AD2</td>
<td>VBUS</td>
<td>F6</td>
<td></td>
<td></td>
<td>5V DC power for USB 3.3V regulator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mounting BT840F on the Host PCB

The following figure shows recommended mounting of BT840F module on the host PCB.

- For the best Bluetooth range performance, the antenna area of module shall extend 11.2 mm outside the edge of host PCB board, or 11.2 mm outside the edge of a ground plane.

- The next choice is to place a module on a corner of host PCB, the antenna area shall extend 11.2 mm from the edge of ground plane. Ground plane shall be at least 5 mm from the edge of the antenna area of module.

- We don’t recommend mounting BT840F module in the middle of a host PCB.

For the best Bluetooth range performance, keep all external metal at least 30mm from the antenna area.
Host Board Design for Low Cost or Long Range

On nRF52 series SoCs, Nordic offers various memory options and protocol supports. Fanstel offers various antenna and power amplifier options. A host board can be designed to accommodate these nRF52 modules. Our suggestions for host PCB design:

If your main goal is minimum PCB cost,

- use a 2-sided PCB.
- Use library component from EV BT832 Gerber files, can be downloaded from http://www.fanstel.com/download-document/. It has 16 castellated pins plus 24 LGA pins. BT840F library component can be used. However, signal routing can be difficult on a 2-sided PCB.
- Be sure of no metal contact in the area of 21 additional BT840F pins.
- BT840F can be mounted on a BT832 pad.

If your main goal is maximum wireless range,

- use a 4 or more layers PCB.
- As much ground plane under BT840F, on top side of host PCB as possible. Use EV BT840F V3 Gerber files as an example.
- If your products may need wireless range of 1 mile (1609 meters) or more, allocate physical space for a 15x28x1.9mm module. This larger module size is required to accommodate Skyworks SKY66112 power amplifier.
- Don't use P0.06 (BT840F pin B4), P0.17 (BT840F pin C3), and P0.19 (BT840F pin D2) on the host board. These pins are used to control SKY66112 power amplifier.
4. BT840F Evaluation Board

Communicating with a PC
A quick and easy way to evaluate BT840F is to use a PC as the host processor. Connect the development board EV-BT840F to a PC with an USB cable. Then,

- Set S1, BT840F is set to command mode. PC will communicate with BT840F.
- Set switch S1 to the other position, BT840F is set to data mode. PC will communicate with a remote device through BT840F Bluetooth wireless connection.

Docklight is a testing, analysis and simulation tool for serial communication protocols (RS232, RS485/422 and others). It allows you to monitor the communication between two serial devices or to test the serial communication of a single device. Docklight significantly increases productivity in a broad range of industries, including automation and control, communications, automotive, equipment manufacturers, and embedded / consumer products. Docklight is easy to use and runs on almost any standard PC using Windows 10, Windows 8, Windows 7, Windows Vista or Windows XP operating system.

Docklight software can be downloaded from the following:

http://www.docklight.de/download_en.htm
Bluetooth Low Energy (BLE) 5 Module BT840F

EV BT840F V0 Evaluation Board Schematics
Additional feature enhancements for version V3 evaluation board:

1. It has the same footprint as Arduino Uno R3. Additional connectors are added for connection to extra GPIO pins of BlueNor modules.

2. EV BT840F is not an UNO R3 compatible board. You can use Nordic develop tools to develop firmware for many UNO R3 compatible shields.

3. Portable smartphone charger can be used to power this board. The circuitry to the left of micro USB connector, J16 produces periodic load to prevent portable smartphone charger from shutting down.
Suggestion for Battery Power Application

Standby current consumption is important for battery-powered product. We suggest adding a 32.768 kHz crystal and 2 capacitors as shown. The 32MHz main clock won’t be active at idle state to save power.
5. Miscellaneous

Soldering Temperature-Time Profile for Re-Flow Soldering
Maximum number of cycles for re-flow is 2. No opposite side re-flow is allowed due to module weight.

![Soldering Temperature-Time Profile](image)

Cautions, Design Notes, and Installation Notes
Failure to follow the guidelines set forth in this document may result in degrading of the product's functions and damage to the product.

Design Notes

(1) Follow the conditions written in this specification, especially the control signals of this module.

(2) The supply voltage has to be free of AC ripple voltage (for example from a battery or a low noise regulator output). For noisy supply voltages, provide a decoupling circuit (for example a ferrite in series connection and a bypass capacitor to ground of at least 47uF directly at the module).

(3) This product should not be mechanically stressed when installed.

(4) Keep this product away from heat. Heat is the major cause of decreasing the life of these products.

(5) Avoid assembly and use of the target equipment in conditions where the products' temperature may exceed the maximum tolerance.

(6) The supply voltage should not be exceedingly high or reversed. It should not carry noise and/or spikes.
(7) This product away from other high frequency circuits.

Notes on Antenna and PCB Layout

(1) Don’t use a module with internal antenna inside a metal case.

(2) For PCB layout:
 - Avoid running any signal line below module whenever possible,
 - No ground plane below antenna,
 - If possible, cut-off the portion of main board PCB below antenna.

Installation Notes

(1) Reflow soldering is possible twice based on the time-temperature profile in this data sheets. Set up the temperature at the soldering portion of this product according to this reflow profile.

(2) Carefully position the products so that their heat will not burn into printed circuit boards or affect the other components that are susceptible to heat.

(3) Carefully locate these products so that their temperatures will not increase due to the effects of heat generated by neighboring components.

(4) If a vinyl-covered wire comes into contact with the products, then the cover will melt and generate toxic gas, damaging the insulation. Never allow contact between the cover and these products to occur.

(5) This product should not be mechanically stressed or vibrated when refloowed.

(6) If you want to repair your board by hand soldering, please keep the conditions of this chapter.

(7) Do not wash this product.

(8) Refer to the recommended pattern when designing a board.

(9) Pressing on parts of the metal cover or fastening objects to the metal will cause damage to the unit.

(10) For more details on LGA (Land Grid Array) soldering processes refer to the application note.

Usage Condition Notes

(1) Take measures to protect the unit against static electricity. If pulses or other transient loads (a large load applied in a short time) are applied to the products, check and evaluate their operation before assembly on the final products.

(2) Do not use dropped products.

(3) Do not touch, damage or soil the pins.

(4) Follow the recommended condition ratings about the power supply applied to this product.

(5) Electrode peeling strength: Do not add pressure of more than 4.9N when soldered on PCB

(6) Pressing on parts of the metal cover or fastening objects to the metal cover will cause damage.
These products are intended for general purpose and standard use in general electronic equipment, such as home appliances, office equipment, information and communication equipment.

Storage Notes
(1) The module should not be stressed mechanically during storage.

(2) Do not store these products in the following conditions or the performance characteristics of the product, such as RF performance will be adversely affected:

- Storage in salty air or in an environment with a high concentration of corrosive gas.
- Storage in direct sunlight
- Storage in an environment where the temperature may be outside the range specified.
- Storage of the products for more than one year after the date of delivery storage period.

(3) Keep this product away from water, poisonous gas and corrosive gas.

(4) This product should not be stressed or shocked when transported.

(5) Follow the specification when stacking packed crates (max. 10).

Safety Conditions
These specifications are intended to preserve the quality assurance of products and individual components. Before use, check and evaluate the operation when mounted on your products. Abide by these specifications, without deviation when using the products. These products may short-circuit. If electrical shocks, smoke, fire, and/or accidents involving human life are anticipated when a short circuit occurs, then provide the following failsafe functions, as a minimum.

(1) Ensure the safety of the whole system by installing a protection circuit and a protection device.

(2) Ensure the safety of the whole system by installing a redundant circuit or another system to prevent a dual fault causing an unsafe status.

Other Cautions
(1) This specification sheet is copyrighted. Reproduction of this data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.

(2) Do not use the products for other purposes than those listed.

(3) Be sure to provide an appropriate failsafe function on your product to prevent an additional damage that may be caused by the abnormal function or the failure of the product.

(4) This product has been manufactured without any ozone chemical controlled under the Montreal Protocol.

(5) These products are not intended for other uses, other than under the special conditions shown below. Before using these products under such special conditions, check their performance and reliability under the said special conditions carefully to determine whether or not they can be used in such a manner.
Bluetooth Low Energy (BLE) 5 Module BT840F

- In liquid, such as water, salt water, oil, alkali, or organic solvent, or in places where liquid may splash.
- In direct sunlight, outdoors, or in a dusty environment
- In an environment where condensation occurs.
- In an environment with a high concentration of harmful gas.

(6) If an abnormal voltage is applied due to a problem occurring in other components or circuits, replace these products with new products because they may not be able to provide normal performance even if their electronic characteristics and appearances appear satisfactory.

(7) When you have any question or uncertainty, contact Fanstel.

Packaging
Production modules are delivered in reel, 1000 modules in each reel.

FCC LABEL
The Original Equipment Manufacturer (OEM) must ensure that the OEM modular transmitter must be labeled with its own FCC ID number. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown below. If the FCC ID is not visible when the equipment is installed inside another device, then the outside of the device into which the equipment is installed must also display a label referring to the enclosed equipment.

The end product with this module may subject to perform FCC part 15 unintentional emission test requirement and be properly authorized.

This device is intended for OEM integrator only.
6. Contact Us

United States:
Fanstel Corp.
7466 E. Monte Cristo Ave. Scottsdale AZ 85260
Tel. 1-480-948-4928
Fax. 1-480-948-5459
Email: info@fanstel.com
Website: www.fanstel.com

Taiwan:
Fanstel Corp.
10F-10, 79 Xintai Wu Road
Xizhu, New Taipei City, Taiwan 22101
泛世公司
臺灣省新北市汐止區新臺五路79號10樓之10, 22101
Tel. 886-2-2698-9328
Fax. 886-2-2698-4813
Email: info@fanstel.com
Website: www.fanstel.com

China:
Fanstel Technologies Corp.
11 Jiale Street
Ping-Dih, Long-Gang, Shen Zhen, GD 518117
泛世康科技(深圳)有限公司
廣東省深圳市龍崗區坪地鎮佳樂街11號
Tel. 86-755-8409-0928
Fax. 86-755-8409-0973
QQ. 3076221086
Email: info@fanstel.com
Website: www.fanstel.com