Low EMI Spread Spectrum Clock Oscillators

3HM57 Group "P"

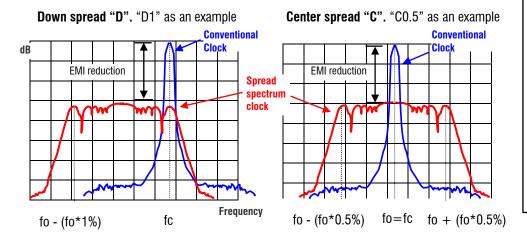

±100 ps Low jitter

A DROP-IN REPLACEMENT SOLUTION FOR YOUR EMI / EMC COMPLIANCE PROBLEM. WHY RE-LAYOUT THE BOARD WHEN YOU CAN HAVE DROP-IN SOLUTION?

The principle sources of the EMI problem come from the system clocks. Therefore, rather than patch the problem with ferrite beads, EMI filters, ground plane and metal shielding, the most efficient and economic way to reduce the peak radiation energy is to use the low EMI clock oscillator.

Compared with the conventional clock oscillators, Mercury HM57 series spread spectrum (dithered) clock oscillators can reduce EMI as much as 12 dB.

3HM57 reduces your EMI and shorten your time to market.



Applications

- Printers; Multiple function printers (MPCs)
- Digital copiers; PDAs
- Networking; LAN / WAN; Routers
- Storage systems (CD-ROM, VCD, DVD and HDD)
- Scanner; Modems; projectors
- Hand-held ID readers

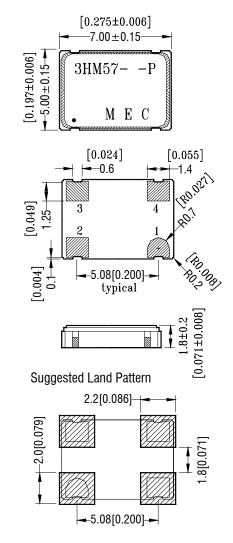
- Embedded systems; Electrical musical instrument
- Automotive; GPS car navigation systems
- LCD PC monitors / LCD TVs
- ADSL; PCMCIA
- Still Digital cameras (SDCs)

Modulation Types Output amplitude (dB) vs frequency span (MHz)

Spread Spectrum Clock (SSC):

Unlike the conventional clock, the mode energy of a spread spectrum clock is spread over a wider bandwidth, resulting from the **frequency modulation** technique. The modulation carrier frequency is in the KHz range which makes the modulation process transparent to the oscillator frequency. The controlled modulation process can be on all of one side of the nominal frequency (**down spread**) or 50% up and 50% down (**center spread**). The down spread is preferred if **over-clocking** is a problem to the system.

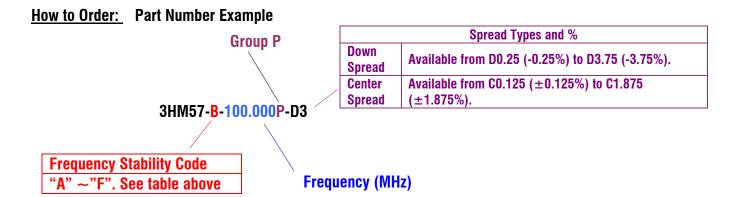
MERCURY <u>www.mercury-crystal.com</u>

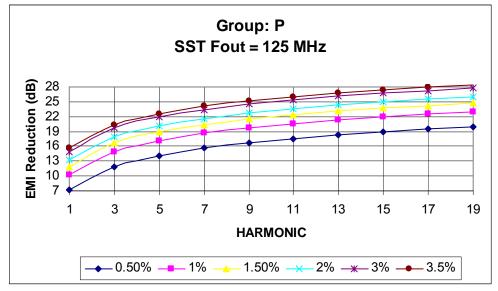


Taiwan: TEL (886)-2-2406-2779, FAX (886)-2-2496-0769, e-mail: sales-tw@mercury-crystal.com U.S.A.: TEL (1)-909-466-0427, FAX (1)-909-466-0762, e-mail: sales-us@mercury-crystal.com

Page 1 of 4 May. 19, 2005 Rev. G

General Specifications: at Ta = +25°C, $C_L = 15$ pF


Mercury Model	3HM57 (spec. for group "P")				
Frequency Range	13.0 ~220.0 MHz				
Spread Type and %	Total %	Down Spread (D)	Center Spread (C)		
	0.25% 0.5% 0.75%	-0.25% (D0.25) -0.5% (D0.5) -0.75% (D0.75)	±0.125% (C0.125) ±0.25% (C0.25) ±0.375% (C0.375)		
Spread Percentage ⁽¹⁾ (Part number suffix) Tolerance: ±30% of the total %	1.25% 2% 2.5% 3% 3.5% 3.75%	-1.25% (D1.25) -2% (D2) -2.5% (D2.5) -3% (D3) -3.5% (D3.5) -3.75% (D3.75)	±0.625 (C0.625) ±1.0 (C1.0) ±1.25 (C1.25) ±1.5 (C1.5) ±1.75 (C1.75) ±1.875 (C1.875)		
(Reduction (Reduction is applied to the entire frequency spectrum)	EMI reduction (dB) = 10Log("Total %"x"SSC Frequency(MHz)"/0.12). See 125 MHz example on the next page.				
Modulation Carrier Frequency (Dither rate)	25.3 KHz min.; 58.6 KHz max. Frequency dependent. Call for details.				
Output Logic	CMOS Square Wave				
Input Voltage (V _{DD})	$V_{DD} = +3.3 \text{ V D.C. } \pm 5\%$				
	Commercial (0°C to +70°C): "A": ±25 ppm; "B': ±50 ppm; "C":±100 ppm Industrial (-40°C to +85°C):				
Frequency Stability (exclude modulation)	"A": ±25 pp	$\frac{\dot{m}}{10^{\circ}\text{C}} = \frac{1}{10^{\circ}\text{C}} = \frac{1}{10^$			
	"A": ±25 pp	m; " B ': ±50 ppm;			
	"A": ±25 pp	m; " B ': ±50 ppm; 40°C to +85°C): m; " E ': ±50 ppm;			
(exclude modulation)	"A": ±25 pp Industrial (-4 "D": ±25 pp	m; "B': ±50 ppm; 40°C to +85°C): m; "E': ±50 ppm; tt 80% V _{DD})			
(exclude modulation) Output Voltage "High"; "1"	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m	m; "B': ±50 ppm; 40°C to +85°C): m; "E': ±50 ppm; tt 80% V _{DD})	" F ":±100 ppm		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0"	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a	m; "B': ±50 ppm; 40°C to +85°C): m; "E': ±50 ppm; at 80% V _{DD}) at 20% V _{DD})	" F ":±100 ppm		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m	m; "B': ± 50 ppm; $^{\circ}$ 40°C to $+ 85$ °C): m; "E': ± 50 ppm; $^{\circ}$ tt 80% V_{DD}) at 20% V_{DD}) ax. $(20\%$ V_{DD} \longleftrightarrow 80	" F ":±100 ppm		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical;	m; "B': ± 50 ppm; $^{\circ}$ 40°C to $+ 85$ °C): m; "E': ± 50 ppm; $^{\circ}$ tt 80% V_{DD}) at 20% V_{DD}) ax. $(20\%$ V_{DD} \longleftrightarrow 80	"F":±100 ppm % V _{DD})		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typica	m; "B': ± 50 ppm; 40° C to $+ 85^{\circ}$ C): m; "E': ± 50 ppm; at $80\% \ V_{DD}$) at $20\% \ V_{DD}$) ax. $(20\% \ V_{DD} \longleftrightarrow 80)$ 5 ms max.	"F":±100 ppm % V _{DD})		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typical; 50%±5%. (±100 ps typ	m; "B': ± 50 ppm; 40° C to $+85^{\circ}$ C): m; "E': ± 50 ppm; at $80\% \ V_{DD}$) at $20\% \ V_{DD}$) ax. $(20\% \ V_{DD} \longleftrightarrow 80$ 5 ms max. al; Frequency dependency depe	"F":±100 ppm % V _{DD})		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter Output Impedance	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.; (a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typical 50%±5%. (±100 ps typ 40 ohms typ	m; "B': ± 50 ppm; 40° C to $+85^{\circ}$ C): m; "E': ± 50 ppm; at 20° V _{DD}) at 20° V _{DD}) ax. $(20^{\circ}$ V _{DD} \longleftrightarrow 80 5 ms max. al; Frequency dependency de	"F":±100 ppm % V _{DD}) ent		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter Output Impedance Static Discharge Voltage	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typical; 50%±5%. (±100 ps typ 40 ohms typ >2000 V (pe	m; "B': \pm 50 ppm; \pm 40°C to \pm 85°C): m; "E': \pm 50 ppm; at 20% \pm 700 var. \pm 80% \pm 800 var. \pm 80% var.	"F":±100 ppm % V _{DD}) ent		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter Output Impedance Static Discharge Voltage Storage Temperature	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typica; 50%±5%. (±100 ps typ 40 ohms typ >2000 V (pc -65°C to +1	m; "B': \pm 50 ppm; $^{\circ}$ 40°C to $+$ 85°C): m; "E': \pm 50 ppm; at 80% V_{DD}) at 20% V_{DD}) ax. (20% $V_{DD} \leftrightarrow 80$) 5 ms max. al; Frequency dependency to $C_L = 15$ pF; at 50% V_{DD} ical; \pm 150 ps max. al; and $\Delta V_{DD} \leftrightarrow \delta V_{DD}$ ical;	"F":±100 ppm "K V _{DD}) ent nod 3015)		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter Output Impedance Static Discharge Voltage Storage Temperature Aging	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.;(a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typical; 25 mA typical; 50%±5%. (±100 ps typ 40 ohms typ >2000 V (pe -65°C to +1 ±5 ppm per	m; "B': ± 50 ppm; 40°C to $+85$ °C): m; "E': ± 50 ppm; at $80\% V_{DD}$) at $20\% V_{DD}$) ax. $(20\% V_{DD}) \longleftrightarrow 80$ 5 ms max. al; Frequency dependency depend	"F":±100 ppm "K V _{DD}) ent po) nod 3015)		
(exclude modulation) Output Voltage "High"; "1" Output Voltage "Low"; "0" Rise Time / Fall Time Load Start-up Time Current Consumption Duty Cycle Cycle-to-cycle Jitter Output Impedance Static Discharge Voltage Storage Temperature	"A": ±25 pp Industrial (-4 "D": ±25 pp 2.4 V min.; (a 0.4 V max. (a 1.2 n sec. m 15 pF 2 ms typical; 25 mA typical; 25 mA typical; 50%±5%. (±100 ps typ 40 ohms typ >2000 V (pe -65°C to +1 ±5 ppm per No Option a	m; "B': ± 50 ppm; 40°C to $+85$ °C): m; "E': ± 50 ppm; at $80\% V_{DD}$) at $20\% V_{DD}$) ax. $(20\% V_{DD}) \longleftrightarrow 80$ 5 ms max. al; Frequency dependency depend	"F":±100 ppm % V _{DD}) ent po) nod 3015) s°C connection to this pad		


	Pad Connections				
1	Do not make connection to this pad.	3	Spread Spectrum Output		
2	Ground	4	+3.3 V D.C.		

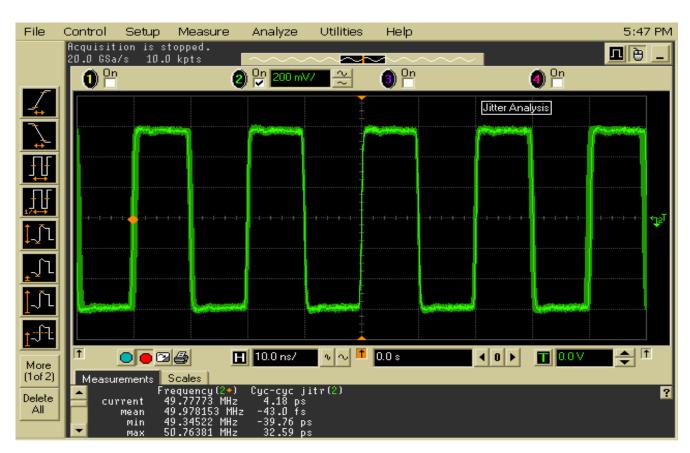
Environmental Performance Specifications

Green Requirement	RoHS Compliant and Pb (lead) free
Storage temp. range	-55 to +125°C
Humidity	85% RH, 85°C, 48 hours
Hermetic seal	Leak rate 2x10 ⁻⁸ ATM-cm ³ /sec max.
Solderability	MIL-STD-202F method 208E
Reflow	260°C for 10 sec.
Vibration	MIL-STD-202F method 204, 35G, 50 to 2000 Hz
Shock	MIL-STD-202F method 213B, test condition. E, 1000GG ½ sine wave

EMI Reduction Data 125 MHz at various spread percentages. Modulation Carrier Frequency: 48.8 KHz

For more technical information please visit www.mercury-crystal.com and download our technical note TN-020 (Title: "Low EMI Spread Spectrum Clock Oscillators").

Other Available Packages:


HM14 (full size 4 pin DIPs), HM8 (half size 4 pin DIPs), HM42 (9.6x11.4x2.5 mm FR4 base leadless SMDs) HM44 (9.6x11.4x4.7 mm FR4 base leadless SMDs) Please visit www.mercury-crystal.com

Instantaneous Frequencies (Example of 100 MHz)

If over-clocking is a problem to your system please choose down spread

Total	Down Spread Instantaneous Frequency		Center Spread Instantaneous Frequency		
Spread %	min.	max.	min.	max.	
	Down Range	Up Range	Down Range	Up Range	
	- 1%	0%	-0.5 %	+0.5%	
0.5 %	-5,000 ppm	0 ppm	-2500 ppm	+2500 ppm	
	99.500000	100.000000	99.750000	100.250000	
	- 2.0%	0%	-1.0 %	+1.0%	
2 %	-20,000 ppm	0 ppm	-10,000 ppm	+10,000 ppm	
	98.000000	100.000000	99.000000	101.000000	
	- 3.0%	0%	-1.5 %	+1.5%	
3 %	-30,000 ppm	0 ppm	-15,000 ppm	+15,000 ppm	
	97.000000	100.000000	98.500000	101.500000	

<u>Jitter</u> 3HM57-B-50.000P Cycle-to-cycle Jitter: 32.59 ps min; 39.76 ps max. Sample rate: 20.0 G Sa/sec.; No. of samples: 10,000; Edge Direction: Rising edges

For more technical information please visit www.mercury-crystal.com and download our technical note TN-020 (Title: "Low EMI Spread Spectrum Clock Oscillators").